Preventing fibril formation of a protein by selective mutation.
نویسندگان
چکیده
The origins of formation of an intermediate state involved in amyloid formation and ways to prevent it are illustrated with the example of the Formin binding protein 28 (FBP28) WW domain, which folds with biphasic kinetics. Molecular dynamics of protein folding trajectories are used to examine local and global motions and the time dependence of formation of contacts between C(α)s and C(β)s of selected pairs of residues. Focus is placed on the WT FBP28 WW domain and its six mutants (L26D, L26E, L26W, E27Y, T29D, and T29Y), which have structures that are determined by high-resolution NMR spectroscopy. The origins of formation of an intermediate state are elucidated, viz. as formation of hairpin 1 by a hydrophobic collapse mechanism causing significant delay of formation of both hairpins, especially hairpin 2, which facilitates the emergence of an intermediate state. It seems that three-state folding is a major folding scenario for all six mutants and WT. Additionally, two-state and downhill folding scenarios were identified in ∼ 15% of the folding trajectories for L26D and L26W, in which both hairpins are formed by the Matheson-Scheraga mechanism much faster than in three-state folding. These results indicate that formation of hairpins connecting two antiparallel β-strands determines overall folding. The correlations between the local and global motions identified for all folding trajectories lead to the identification of the residues making the main contributions in the formation of the intermediate state. The presented findings may provide an understanding of protein folding intermediates in general and lead to a procedure for their prevention.
منابع مشابه
Does Long-Term Administration of a Beta-Blocker (Timolol) Induce Fibril-Based Cataract Formation In-vivo?
Timolol is a non-selective beta-adrenergic receptor antagonist administered for treating glaucoma, heart attacks and hypertension. In the present study, we set out to determine whether or not timolol can provoke cataract formation, thus the influence of timolol on the amyloid-type aggregation of crystallin was investigated. We then provided experimental evidence of crystallin aggregation and it...
متن کاملDoes Long-Term Administration of a Beta-Blocker (Timolol) Induce Fibril-Based Cataract Formation In-vivo?
Timolol is a non-selective beta-adrenergic receptor antagonist administered for treating glaucoma, heart attacks and hypertension. In the present study, we set out to determine whether or not timolol can provoke cataract formation, thus the influence of timolol on the amyloid-type aggregation of crystallin was investigated. We then provided experimental evidence of crystallin aggregation and it...
متن کاملStudy of Nanofibrils Formation of Fibroin Protein in Specific Thermal and Acidity Conditions
Background: Amyloid fibrils are insoluble arranged aggregates of proteins that are fibrillar in structure and related to many diseases (at least 20 types of illnesses) and also create many pathologic conditions. Therefore understanding the circumstance of fibril formation is very important.Objectives: This study aims to work on fibrillar structure formation of fibroin (as a model protein)...
متن کاملمطالعه فرایند فیبریل زایی انسولین رگولارو مهار آن با استفاده از ترکیبات آروماتیک
Background: The flexible structure of proteins is one important factor in the formation of ordered aggregates (amyloid fibril). This is a major problem for therapeutic proteins such as insulin. Study on the induction and inhibition of insulin fibrillation process with specific compounds such as aromatic derivatives may provide useful information about means of stabilization of protein structure...
متن کاملMechanistic Insight into the Relationship between N-Terminal Acetylation of α-Synuclein and Fibril Formation Rates by NMR and Fluorescence
Aggregation of α-synuclein (αSyn), the primary protein component in Lewy body inclusions of patients with Parkinson's disease, arises when the normally soluble intrinsically disordered protein converts to amyloid fibrils. In this work, we provide a mechanistic view of the role of N-terminal acetylation on fibrillation by first establishing a quantitative relationship between monomer secondary s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 44 شماره
صفحات -
تاریخ انتشار 2015